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Thermal transient behaviour of a bi-layer material with a non-plane interface
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Abstract

In this study, we propose studying the behaviour in a transitory regime of a bi-layer material with a non-plane interface. The aim of this paper is to
show if a “thermal diode” effect in transient regime can exist, knowing that there are no thermal diode effects in steady-state regime. The question
is to know if the response of a system can be modified if the stimulation is changed with the detection at the boundaries of the system. For instance,
in the case of a “Flash” experiment where the stimulation represents a heat flux and the detection corresponds to a temperature measurement.
© 2007 Elsevier Masson SAS. All rights reserved.
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1. Introduction

In the case of a homogeneous material subjected to a uni-
form heat flux stimulation in the front face (Fig. 1), the back
face temperature response can be easily obtained using the ther-
mal quadrupoles technique [1]:[

θi

φi

]
=

[
A B

C D

][
θo

φo

]
(1)

θi and θo being the Laplace transforms of the front (input: i)
and rear (output: o) faces temperatures respectively. φi and φo

denote the Laplace transforms of the front and rear faces fluxes
and A, B , C, and D represent the coefficients of the inverse
transfer matrix of the system:

A = D = ch(αe) (2)

B = 1

λαS
sh(αe) (3)

C = λαS sh(αe) (4)

with: α2 = p/a

In the case of an insulated system (φo = 0):

θo = φi

C
(5)
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Fig. 1. Homogeneous material.

The impedance of the system is given by: 1
C

.
A homogeneous material is symmetric and thus reversible.

So, if the inlet and outlet of the system are swapped, the re-
sponse is the same.

Let us imagine now a non-symmetric system as for instance
a multi-layer material (Fig. 2). Through the quadrupole tech-
nique, we obtain:

[
θi

φi

]
=

[
A1 B1
C1 D1

][
A2 B2
C2 D2

][
θo

φo

]

for the bi-layer material (6)

and
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Nomenclature

a thermal diffusivity . . . . . . . . . . . . . . . . . . . . . m2 s−1

Cp specific heat . . . . . . . . . . . . . . . . . . . . . . . J kg−1 K−1

e thickness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
G Green’s function
h heat exchange coefficient . . . . . . . . . . W m−2 K−1

p Laplace variable . . . . . . . . . . . . . . . . . . . . . . . . . . s−1

q, q ′ heat flux density . . . . . . . . . . . . . . . . . . . . . . . W m−2

S,S′ cross-section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m2

T temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K

Greek symbols

δ Dirac function
φ Laplace transformed heat flux . . . . . . . . . . . . . . W s
λ thermal conductivity . . . . . . . . . . . . . . . W m−1 K−1

ρ density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg m−3

θ Laplace transformed temperature . . . . . . . . . . . K s

Subscripts

i input
o output
Fig. 2. Non-symmetric multi-layer.

[
θi

φi

]
=

[
A1 B1
C1 D1

][
A2 B2
C2 D2

][
A3 B3
C3 D3

][
θo

φo

]

for the tri-layer material (7)

and[
θi

φi

]
=

[
A1 B1
C1 D1

][
1 Rc

0 1

][
A2 B2
C2 D2

][
θo

φo

]

for the bi-layer material with contact resistance (8)

or[
θi

φi

]
=

[
A B
C D

][
θo

φo

]
(9)

and

θo = 1

C
φi (10)

with:

C12 = C1A2 + D1C2 (11)

and

C123 = (C1A2 + D1C2)A3 + (C1B2 + D1D2)C3 (12)

and

C1R2 = C1A2 + (C1Rc + D1)C2 (13)
Changing the inlet with the outlet:[
θi

φi

]
=

[
A2 B2
C2 D2

][
A1 B1
C1 D1

][
θo

φo

]

for the bi-layer material (14)

and[
θi

φi

]
=

[
A3 B3
C3 D3

][
A2 B2
C2 D2

][
A1 B1
C1 D1

][
θo

φo

]

for the tri-layer material (15)

and[
θi

φi

]
=

[
A2 B2
C2 D2

][
1 Rc

0 1

][
A1 B1
C1 D1

][
θo

φo

]

for the bi-layer material with contact resistance (16)

or

C21 = A1C2 + C1D2 (17)

and

C321 = (A2C3 + C2D3)A1 + (B2C3 + D2D3)C1 (18)

and

C2R1 = A1C2 + C1(C2Rc + D2) (19)

Using the property that Ai = Di (symmetry), we obtain:

C12 = C21 (20)

and

C123 = C321 (21)

and

C1R2 = C2R1 (22)

Whatever is the number of layers, the result is the same. This
can be easily shown from Eq. (9). The inverse of this relation is
given by:[

θi

−φi

]
=

[
A B
C D

]−1 [
θo

−φo

]
(23)

with φo = 0, we find:

−φi = 1
(−C)θo or θo = AD − BC

φi (24)

Δ C
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as Δ = AD − BC = 1 (passive system), we obtain:

θo = φi

C
(25)

(same expression as Eq. (10)).

2. Bi-layer with a non-plane interface

A study in steady-state regime [2] carried out on a bi-layer
material with a non-plane interface exhibits large variations of
the thermal resistance compared to the case of a plane interface.
Experiments in transient regime have also been performed on a
non-homogeneous sample as described in the Fig. 3 and com-
posed of epoxy resin and brass.

2.1. Experimental results

In order to compare their respective behaviours, the sample
shown in the Fig. 3 as well as the bi-layer material with a plane
interface (Fig. 4) are made with the same quantities of materi-
als. A flash experiment is considered. The sample is subjected
to a heat flux stimulation with a very short duration (Dirac).
The in-time temperature response is measured through a semi-
conductor thermocouple (Fig. 5).

Samples are tested with the stimulation both in the brass
and in the resin sides. The four experimental thermograms are
drawn in Fig. 6.

We can notice that for the sample with a plane interface, the
responses are the same whatever is the stimulated face (con-
sistent with theory). On the other hand, as for the study in
steady-state regime, the responses are faster for the sample with
a non-plane interface than for the plane interface. In addition to
that, some differences appear according to the stimulated face,
what let us suppose the presence of a “thermal diode” effect.
The following theoretical study will show that it is not the case
in reality.

Fig. 3. Bi-layer with a non-plane interface.
2.2. Numerical study

No analytical solution exists for this problem. So, it has been
solved numerically through the finite elements numerical code
FlexPDE. Computations were performed in a 3D axi-symmetric
geometry assuming that there are no contact resistance between
the two materials and no heat loss with the surrounding, what
is not really the case in our experiment where heat exchange by
convection takes place.

Nominal values used for simulation:

– Epoxy resin:

λ = 0.19 W m−1 K−1

ρ = 1180 kg m−3

Cp = 1440 J kg−1 K−1

Fig. 4. Bi-layer with a plane interface.

Fig. 5. Flash type diffusivimeter.
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Fig. 6. Experimental curves.

Fig. 7. Theoretical thermograms.

– Brass:

λ = 115 W m−1 K−1

ρ = 8500 kg m−3

Cp = 385 J kg−1 K−1

2.2.1. First case
At first, we considered a uniform stimulation on the front

face and a mean temperature measurement on the back face (we
called it “uniform”). In that case and after permutation of the
stimulation and the detection (Fig. 8, cases #1 and #2), thermo-
grams overlap (see Fig. 7). Thus, contrary to the experiment, no
diode effect appears in simulations.

2.2.2. Second case
In experiments, temperature measurement by thermocou-

ple is local. So, we are now interested in the case of an uni-
form stimulation and a mean temperature measurement on a
Fig. 8. Various configurations.

restricted area corresponding to 1/3 of the sample diameter and
centered on the sample axis (we called it “local”). In that case
(Fig. 8, case #6), the response is different from that obtained in
the case #2. However, if we change the stimulation with the de-
tection (local stimulation and uniform measurement case #5),
the same thermogram is obtained.

2.2.3. General case
If we consider the 8 possible cases (Fig. 8) (the Case 0 corre-

sponds to the plane interface), we obtain two different responses
that exhibit 3D effects in the sample. In all the cases, the re-
sponses are the same if the inlet and the outlet are swapped.
Thus, there are no diode effect. The configurations related to
the experiments correspond to the cases #3 and #6. The experi-
mental results are now in good agreement with theory.

2.3. Generalization of the results

The question is then to know if these results can be extended
to any other conductive systems. In fact, as it will be shown
below, the answer is yes.

Let us consider now the heterogeneous system described in
Fig. 9 without internal source and initially at thermal equilib-
rium. This system is general and concerns not only the multi-
layers system, but also all other systems that exhibit distrib-
uted phases as for instance resin materials containing heteroge-



550 A. Degiovanni, B. Remy / International Journal of Thermal Sciences 47 (2008) 546–551
Fig. 9. Heterogeneous conductive system.

neously distributed particles or loads (balls, fibers, . . . ). Using
the Green’s functions (see Appendix A) with g ≡ 0 and F ≡ 0,
the result is:

T (r, t) =
τ=t∫

τ=0

dτ

∫
S

G(r, t |r ′, τ )f (r ′, τ )dr ′ (26)

If a Dirac of flux is imposed on a part S′ of the surface with
f (r ′, τ )|S′ = q ′δ(τ ) (q ′ = constant), the mean temperature T̄

on another part S is given by:

T̄ (t) = 1

S

∫
S

T (r, t)dr = q ′

S

∫
S

∫
S′

G(r, t |r ′,0)dr ′ dr

= q ′

S

∫
S

∫
S′

K(r, t |r ′)dr ′ dr (27)

Setting K(r, t − τ |r ′) = G(r, t |r ′, τ ) (in fact Green’s function
only depends on t − τ and not independently on t or τ ).

However, if a Dirac of flux is now imposed on a part S of
the surface with f (r, τ )|S = qδ(τ ) (q = constant), the mean
surface temperature T̄ ′ on another part S′ is given by:

T̄ ′(t) = 1

S′

∫
S′

T (r ′, t)dr ′ = q

S′

∫
S′

∫
S

G(r ′, t |r,0)dr dr ′

= q

S′

∫
S′

∫
S

K(r ′, t |r)dr dr ′ (28)

The order of integration on both surfaces that can be permuted
and the reciprocity of G lead to:

K(r, t |r ′) = G(r, t |r ′,0) = G(r ′,0|r,−t) = K(r ′, t |r) (29)

Finally, it comes:

ST̄ (t)

q ′ = S′T̄ ′(t)
q

(30)

This shows the system reversibility.

3. Conclusion

A non-plane interface decreases the thermal resistance of
the system and increases heat transfers (apparent diffusivity
is larger than for a smooth interface). On the other hand, we
showed that no thermal diode (in pure conduction) can exist ei-
ther in steady-state or in transient regime.

The system being linear (λ and ρc non-dependent of temper-
ature T ), the results obtained for a Dirac of flux can be extended
to any shape of stimulation. In fact, we have shown that the
transfer function of the system is “reversible”.
Appendix A. Green’s functions for heat transfer equation
in a non-homogeneous material

A.1. Green’s function reciprocity (see [3])

Green’s function G(r, t |a, τ ) satisfies:

∇ · [λ∇G(r, t |a, τ )] + δ(r − a)δ(t − τ) = ρc
∂G

∂t
in R, t > τ (A.1)

λ
∂G

∂n
+ hG = 0 on S, t > τ (A.2)

G(r, t |a, τ ) = 0 if t < τ (A.3)

In this equation λ, ρc and h can vary in space (different materi-
als). We have also to notice that, defined in this way, the Green’s
function unit is K J−1.

The reciprocity consists in showing that:

G(b, θ |a, τ ) = G(a,−τ |b,−θ) (A.4)

A.1.1. Demonstration
Let:

F(r, t) = G(r, t |a, τ ) (A.5)

H(r, t) = G(r,−t |b,−θ) (A.6)

F and H satisfy the following equations:

∇ · [λ∇F ] + δ(r − a)δ(t − τ) = ρc
∂F

∂t
in R, t > τ (A.7)

λ
∂F

∂n
+ hF = 0 on S, t > τ (A.8)

F(r, t) = 0 if t < τ (A.9)

∇ · [λ∇H ] + δ(r − b)δ(t − θ) = −ρc
∂H

∂t
in R, t > τ (A.10)

λ
∂H

∂n
+ hH = 0 on S, t > τ (A.11)

H(r, t) = 0 if t > θ (A.12)

Multiplying Eq. (A.7) by H , Eq. (A.10) by F and taking the
difference, we finally obtain after an integration in space r on
R and in time t for −∞ < t < +∞:
t=+∞∫

t=−∞

∫
R

[
H∇ · (λ∇F) − F∇ · (λ∇H)

]
dr dt

+ H(a, τ) − F(b, τ ) =
∫
R

ρc[FH ]t=+∞
t=−∞ dr (A.13)

The first left-hand side term is null. Indeed (Green’s formula):∫
R

[
H∇ · (λ∇F) − F∇ · (λ∇H)

]
dr

=
∫
R

[∇ · (Hλ∇F) − ∇ · (Fλ∇H)
]

dr

=
∫

λ

(
H

∂F

∂n
− F

∂H

∂n

)
dS = 0 (A.14)
S



A. Degiovanni, B. Remy / International Journal of Thermal Sciences 47 (2008) 546–551 551
The nullity of this term comes from the homogeneous character
of the boundary condition (A.2).

Finally, the term [FH ]t=+∞
t=−∞ is equal to zero because of the

initial condition (Green’s function is null before the stimula-
tion) for F at t = −∞ (A.9) and for H at t = +∞ (A.12). It
comes:

F(b, θ) = H(a, τ) (A.15)

G(b, θ |a, τ ) = G(a,−τ |b,−θ) (A.16)

A.2. Using the Green’s function

To obtain T (r, t), the following system must be solved:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∇ · [λ∇T (r, t)
] + g(r, t) = ρc

∂T (r, t)

∂t
in R, t > 0

λ
∂T

∂n
+ hG = f (r, t) on S, t > 0

T (r, t) = F(r) at t = 0

(A.17)

Let use the Green’s function G(r, t |r ′, τ ), which satisfies the
relation of reciprocity (16):

G(r, t |r ′, τ ) = G(r ′,−τ |r,−t) (A.18)

r and t being fixed, it satisfies the following problem in r ′ and
τ (∇0 denotes the operator related to the variable r ′):⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∇0 · [λ∇0G] + δ(r ′ − r)δ(τ − t)

= −ρc
∂G(r ′, τ )

∂τ
in R, t > τ

λ
∂G

∂n
+ hG = 0 on S, t > τ

G = 0 if t < τ

(A.19)

After a change of variables (r ′ and τ ), T satisfies:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∇0 · [λ∇0T (r ′, τ )
] + g(r ′, τ )

= ρc
∂T (r ′, τ )

∂τ
in R,τ > 0

λ
∂T

∂n
+ hT = f (r ′, τ ) on S, τ > 0

T (r ′, τ ) = F(r ′) if t = 0

(A.20)

Multiplying Eq. (A.19.a) by T , Eq. (A.20.a) by G and taking
the difference yields:
[
G∇0 · (λ∇0T ) − T ∇0 · (λ∇0G)

] + g(r ′, τ )G

− δ(r ′ − r)δ(τ − t)T (r ′, τ ) = ρc
∂(GT )

∂τ
(A.21)

Integrating the previous equation in r ′ on all the volume R and
in τ for 0 < τ < t∗ = t + ε (ε being arbitrarily small):
τ=t∗∫
τ=0

dτ

∫
R

[
G∇0 · (λ∇0T ) − T ∇0 · (λ∇0G)

]
dr ′

+
τ=t∗∫

τ=0

dτ

∫
R

g(r ′, τ )Gdr ′ − T (r, t) =
∫
R

ρc[GT ]τ=t∗
τ=0 dr ′

(A.22)
Let us estimate successively the different terms appearing

in the previous equation. Using the Green’s formula and the
boundary conditions on S, we obtain:∫
R

[
G∇0 · (λ∇0T ) − T ∇0 · (λ∇0G)

]
d r ′

=
∫
S

λ

(
G

∂T

∂n
− T

∂G

∂n

)
dr ′

=
∫
S

f (r ′, τ )Gdr ′ (A.23)

[GT ]τ=t∗
τ=0 = (GT )|τ=t∗ − (GT )|τ=0 = −G|τ=0F(r ′) (A.24)

Because G|τ=t∗ = G(r ′,−(t + ε)|r,−t) = 0. It finally comes:

T (r, t) =
τ=t∗∫

τ=0

dτ

∫
S

G(r, t |r ′, τ )f (r ′, τ )dr ′

+
τ=t∗∫

τ=0

dτ

∫
R

G(r, t |r ′, τ )g(r ′, τ )dr ′

+
∫
R

ρcG(r, t |r ′, τ )|τ=0F(r ′)dr ′ (A.25)

In the particular case with no internal sources (g ≡ 0) and a
uniform initial condition (F ≡ 0), the result is:

T (r, t) =
τ=t∫

τ=0

dτ

∫
S

G(r, t |r ′, τ )f (r ′, τ )dr ′ (A.26)
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